

ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ НАУЧНО-ПРОИЗВОДСТВЕННОЕ ПРЕДПРИЯТИЕ «ДОНСКИЕ ТЕХНОЛОГИИ» (ООО НПП «ДОНСКИЕ ТЕХНОЛОГИИ»)

Отчет о выполнении НИОКР «Экспериментальные исследования альтернативного топлива производства

ООО «Калужский завод по производству альтернативного топлива»

Этап №1

Исследование альтернативного топлива и доведение его параметров до требований, предъявляемых к качеству альтернативного топлива по ГОСТ 33516-2015

(промежуточный)

Список исполнителей

ООО НПП «Донские технолог	ии»	
А.С. Ощепков _ Руководитель работ, Исполнительный директор, к.т.н.	подпись, дата	общее руководство работами, разработка конструкции сушильного барабана, разработка Программы и методики проведения экспериментальных исследований, стенда, проведение экспериментальных исследований и анализ результатов
А.В. Рыжков Старший научный сотрудник, к.т.н.	подпись, дата	расчет энергетических балансов, анализ исходного сырья, разработка системы контроля технологических параметров при проведении экспериментальных исследований, анализ результатов, оформление отчётных материалов
А.А. Тимофеева Ведущий инженер	подпись, дата	анализ поставщиков, закупка материалов и оборудования, оформление отчётных материалов
Д.С. Католиченко Инженер	подпись, дата	разработка технических решений по процессам измельчения сырья и его подачи в реактор, разработка испытательного стенда для проведения исследований, проведение экспериментальных исследований и анализ результатов
ООО «Калужский завод по про	оизводству альтернат	гивного топлива»
Д.В. Квач Заместитель генерального директора	подпись, дата	координация работ между предприятиями, организация доставки альтернативного топлива, подготовка исходных данных для выполнения расчетов

Реферат

Отчет содержит 28 страниц, 15 рисунков, 3 таблиц, 4 источника, 4 приложения.

Ключевые слова: АЛЬТЕРНАТИВНОЕ ТОПЛИВО, ЭНЕРГОТЕХНОЛОГИЧЕСКИЙ КОМПЛЕКС, ИСПЫТАНИЯ НА СООТВЕТСТВИЕ ГОСТ, ТЕПЛОТВОРНАЯ СПОСОБНОСТЬ, ВЛАЖНОСТЬ.

Объект исследования: хвосты сортировки твердых коммунальных отходов (ТКО), получаемых на технологическом комплексе ООО «Калужский завод по производству альтернативного топлива».

Цель НИОКР: разработка технологии и создание оборудования для доведения хвостов сортировки ТКО до требований, предъявляемых к альтернативному топливу <u>ГОСТ 33516-2015</u> [1] с возможностью их применения в цементной отрасли РФ. Цель работ на первом этапе: исследование морфологического состава полученных «хвостов» сортировки, разработка технологии и оборудования по его подготовке для дальнейшей переработки в реакторе оксипиролиза (сушка и измельчение), проведение экспериментальных исследований, анализ полученных результатов, оценка энергетических характеристик и выработка рекомендаций ООО «Калужский завод по производству альтернативного топлива».

В отчете отражены результаты следующих работ:

- Оценка сырья на соответствие требований, предъявляемых к альтернативному топливу ГОСТ 33516-2015.
- Подготовка сырья для испытаний.
- Разработка и изготовление оборудования для подготовки сырья и проведения его испытаний.
- Подготовка экспериментального образца энерготехнологического комплекса к испытаниям.

Заказчик исследований: ООО «Калужский завод по производству альтернативного топлива». ООО «Калужский завод по производству альтернативного топлива» специализируется на оказании широкого спектра услуг по утилизации отходов, как для корпоративных клиентов, так и для частных лиц. Это современное предприятие, основным направление деятельности которого является сортировка твердых коммунальных отходов (ТКО).

Деятельность предприятия признана лучшей практикой в отрасли обращения с отходами и вторичными ресурсами. Компания делает акцент на энергетической утилизации ТКО. На этапе сортировки из общей массы извлекаются отходы, которые можно успешно переработать во вторичное сырье — они отправляются на соответствующие предприятия. Из остатка сортировки производится доступное по цене топливо RDF для высокотемпературных промышленных печей.

Безотходная переработка ТКО позволяет предприятию отказаться от полигонного захоронения.

Инициатор и исполнитель исследований: ООО НПП «Донские технологии». <u>ООО «Донские технологии»</u> 15 лет успешно ведет научно-исследовательскую и опытно-

конструкторскую деятельность в области энергосберегающих и энергоэффективных технологиях, в том числе с использованием ВИЭ. ООО НПП «Донские технологии» сотрудничает с ведущими научными академическими и университетскими центрами, выполняет проекты в интересах Министерства науки и образования РФ, Министерства энергетики РФ, ОАО «ЛУКОЙЛ-Ростовэнерго», РЖД и др. коммерческих структур.

В настоящее время основными направлениями деятельности ООО НПП «Донские технологии» являются:

- создание интеллектуальных гибридных энергетических систем энергоснабжения, построенных на различных источниках генерации энергии, включая альтернативные и возобновляемые источники энергии (ВИЭ);
- разработка энергоэффективных технологий в области переработки ТКО, сельскохозяйственных отходов и золошлаковых отходов (ЗШО) от сжигания твердого топлива и создание высокотехнологического оборудования по их реализации.

Предприятие занимается разработкой алгоритмов управления энергией в локальных распределенных энергетических системах, построенных на основе различных источников генерации электрической и тепловой энергии, включая ВИЭ, разработкой и созданием энерготехнологических комплексов (ЭТК) на базе высокооборотных микротурбин и генераторов как элементов в малой распределенной энергетике.

Данная НИОКР выполняется ООО НПП «Донские технологии» за счет собственных денежных средств и оборудования.

Содержание

1 Основание выполнения работ	5
2 Цель выполнения работ	5
3 Объекты испытаний	5
3.1 Альтернативное топливо	5
3.2 Экспериментальный комплекс	6
4 Первоначальное состояние сырья	7
5 Разработка и реализация решений по доведению характеристик сырья до требований ГОСТ 33516-2015. Подготовка сырья к испытаниям	8
5.1 Изготовление сушильного барабана	9
5.2 Измельчение и подача сырья	10
5.3 Модернизация существующей системы подачи сырья в реактор	13
5.4 Оценка теплотворной способности сырья	14
5.5 Подготовка теплообменного оборудования	15
6 Состав экспериментального комплекса	16
7.1 Работа комплекса при испытании альтернативного топлива без выработки электроэнерги	и 18
7.2 Работа комплекса при испытании альтернативного топлива с выработкой электроэнергии	ք19
8 Выводы по полученным результатам I этапа работ	19
9 План дальнейших совместных работ на последующие этапы НИОКР	22
10 Рекомендации для КЗПАТ по улучшению качества альтернативного топлива	22
Список использованных источников	24
Приложение 1	25
Приложение 2	26
Приложение 3	28
Приложении 4	29

1 Основание выполнения работ

Выполнение НИОКР «Экспериментальные исследования альтернативного топлива производства ООО «Калужский завод по производству альтернативного топлива» (далее КЗПАТ) основываются на следующих документах:

- 1.1 Соглашение о научно-техническом сотрудничестве при подготовке и реализации КНТП Проекта «Комплексная глубокая переработка твердых коммунальных отходов (ТКО) комбинированным методом оксипиролиза и газификации» между ООО НПП «Донские технологии» и КЗПАТ от 22.02.2023 г. (Приложение 1. Электронный документ).
- 1.2 Паспорт отраслевой программы «Применение альтернативного топлива из отходов в промышленном производстве на 2022 2030 годы», утвержден Постановлением заместителя Председателя Правительства РФ Абрамченко В.В. от 28 декабря 2022 года №16042п-П11 [2].

2 Цель выполнения работ

- 2.1 Проведение экспериментальных испытаний по проверке соответствия хвостов сортировки ТКО требованиям к качеству альтернативного топлива по ГОСТ 33516-2015.
- 2.2 Разработка технологии по доведению хвостов сортировки ТКО до нормативных и технических решений по созданию оборудования для реализации данной технологии.

3 Объекты испытаний

Альтернативное топливо (хвосты сортировки ТКО), получаемое в процессе переработки ТКО на технологическом комплексе КЗПАТ перед их непосредственной отгрузкой потребителю – Ферзиковскому цементному заводу (ООО «Холсим (Рус) СМ»).

Экспериментальный энерготехнологический комплекс (ЭТК) по переработке ТКО и сельскохозяйственных отходов ООО НПП «Донские технологии» в Индустриальном парке г. Новочеркасск.

3.1 Альтернативное топливо

С целью разработки технологии и оборудования по переработке хвостов сортировки ТКО с получением из них альтернативного топлива, соответствующего требованиям ГОСТ 33516-2015. Для этого на основе запроса (приложение 2 − письмо ООО НПП «Донские технологии» № 01 от 12.01.2023г. и письмо №17 от 22.02.2023 г. в КЗПАТ на получение 2-2,5 тонн альтернативного топлива) в марте 2023 г. сотрудниками ООО НПП «Донские технологии» принято на испытания сырье от КЗПАТ. Транспортной компанией было принято 1276 кг. при выгрузке взвешивание не осуществлялось. Полученное сырье является измельченными (с фракцией до 100 мм) хвостами сортировки ТКО (см. рисунок 1).

Рисунок 1 – Топливо для испытаний. Размер отдельных составных частей – более 100 мм

3.2 Экспериментальный комплекс

Энерготехнологический комплекс (ЭТК) является экспериментальной установкой по термической переработке твердых коммунальных и сельскохозяйственных отходов разработанный и изготовленный коллективом ООО НПП «Донские технологии».

3д-модель ЭТК представлена на рисунке 2, фотография ЭТК в процессе монтажа и пуско-наладочных работ представлена на рисунке 3.

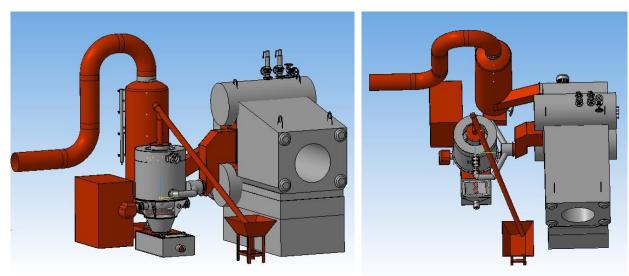


Рисунок 2 – 3д-модель ЭТК

Рисунок 3 – ЭТК в процессе монтажных и пуско-наладочных работ

4 Первоначальное состояние сырья

Влажность хвостов на момент получения — высокая: влагомер Amtast AMF038 с переделом измерения 70% выдавал ошибку (рисунок 4). Характерный запах рядом с упаковкой указывал на некачественное отделение органики в процессе сортировки отходов и высокой влажности. Было принято коллективное решение оставить сырье вне цеха, для выветривания и естественной сушки, накрыв биг-бэги от осадков. В дальнейшем в процессе сушки в составе сырья обнаружились тяжелых балластные включения — камни, бетон, битое стекло, жесть, гвозди, куски резиновых изделий, деревянные щепки крупного размера — до 100 мм.

Рисунок 4 – Высоковлажное сырье, влажность более 70%

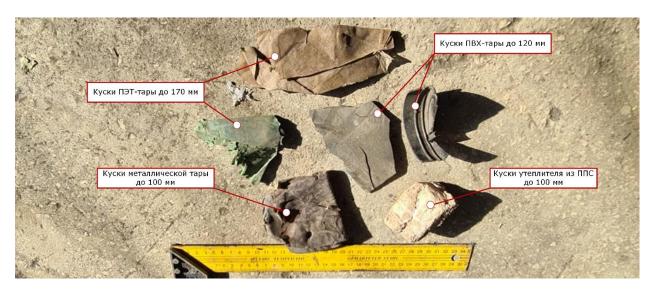


Рисунок 5 – Балластные включения

По мере повышения температуры окружающей среды и длительности светового дня, сырье высыхало естественным образом. Неприятный запах улетучился. При этом влажность, как и прежде оставалась высокой – около 50%. (рисунок 6).

Рисунок 6 – Высоковлажное сырье после естественной сушки, влажность около 50%

5 Разработка и реализация решений по доведению характеристик сырья до требований ГОСТ 33516-2015. Подготовка сырья к испытаниям

В соответствии с принятой системой классификации в ГОСТ 33516-2015 (таблица 1) твердое топливо из бытовых отходов подразделяют на классы в зависимости от значений следующих показателей: среднеарифметическое значение низшей теплоты сгорания, среднеарифметическое значение содержания хлора; среднеарифметическое и 80% значение содержания ртути. Значения каждого из указанных показателей подразделяют на 5 классов с соответствующими граничными значениями.

Таблица 1 – Система классификации твердого топлива из бытовых отходов

Попомотр	Статист.	Ен иом	Класс				
Параметр	характеристика	Ед. изм.	1	2	3	4	5
Низшая теплота сгорания, Q _i , не менее	Среднеарифмет. знач	МДж/кг	25	20	15	10	3
Содержание хлора Cl, не более	Среднеарифмет. знач	%	0,2	0,6	1,0	1,5	3
Содержание ртути	Усредненное знач.	мг/МДж	0,02	0,03	0,08	0,15	0,5
Hg, не более	80% знач.	мг/МДж	0,04	0,06	0,16	0,30	1,00

Дополнительно, помимо присвоения класса твердому топливу из бытовых отходов оно должно иметь спецификацию, содержащую перечень обязательных показателей таких как: происхождение, форма и размер частиц, зольность, влажность, содержание тяжелых металлов; и дополнительных: массовая доля (в %) основных фракций, стадии подготовки топлива, содержание других химических веществ, кроме обязательных. Основная часть этих показателей будет определена на II этапе работ с привлечением аккредитованной химической лаборатории.

5.1 Изготовление сушильного барабана

В связи с изначальной повышенной влажность и низкой скоростью его естественного высыхания, принято решение сушить принудительно. Для этого сотрудниками ООО НПП «Донские технологии» была разработана эскизная документация, подобраны материалы и комплектующие и изготовлен сушильный барабан производительностью до 50 кг/ч. В качестве теплогенератора в сушильном барабане использована имеющаяся в цехе тепловая пушка мощностью 9 кВт со встроенным дутьевым вентилятором (рисунок 7). Температура сушки – 60 °С.

Рисунок 6 – Сушильный барабан

Загрузка в барабан ручная, выгрузка — гравитационная. Для достижения влажности менее 25% требуется неоднократная прогонка сырья (рисунок 7). Скорость вращения барабана — 10 об/мин. Привод барабана — ременной, питание электродвигателя трехфазное, мощность — 0,4 кВт. Конструкция мобильная, масса конструкции до 100 кг, имеет возможность транспортировки одним человеком.

Рисунок 7 – Фото высушенного сырья. Влажность до 4%

В процессе сушки сырья в сушильном барабане при достижении влажности 30% и менее сырье сильно пылит (рисунок 8). Это условие потребовало проводить сушку на открытом воздухе. В связи с этим барабан в дальнейшем потребует доработку с установкой вытяжного вентилятора (с последующим выбросом в отдельный канал) с большим напором для создания разряжения в барабане. На данном этапе работ решено доработку не проводить.

Рисунок 8 – Пыление высушенного сырья

5.2 Измельчение и подача сырья

Загрузка альтернативного топлива в реактор в ранее проводимых работах осуществляется шнеком, диаметр канала шнека которого — 100 мм и длина 3 м. При попытке осуществить подачу хвостов сортировки КЗПАТ в реактор шнек заклинивает. Часто попадающиеся твердые балластные части в сырье, забивают канал. Крупный размер хлопьев топлива также создает ситуации, в которых топливо наматывает на вал шнека и прессуется. (см. рисунок 9). Запуск реверсивного движения шнека ситуацию не исправляет ситуацию.

Рисунок 9 – Запрессованное АТ в шнековом питателе

Коллективом ООО НПП «Донские технологии» принято решение дополнительно измельчать сырье. Для этого проанализирован рынок и приобретена молотковая дробилка Molot-200 производительностью до 200 кг/ч (рисунок 10). Диаметр ротора — 310 мм, частота вращения ротора — 2850 об/мин, число ножей — 30 шт. Энергия удара — 400 Дж, мощность двигателя 1,1 кВт. Дробилка предназначена для измельчения сыпучего и кускового сырья, деревянной щепы, картона, стройматериалов, твердого пластика. Поэтому с мягкими хвостами сортировки ТКО работает плохо. Были доработаны ножи для измельчения сырья. Это позволили измельчать фракции сырья до размера не более 30 мм.

5.3 Модернизация существующей системы подачи сырья в реактор

Система подачи в реактор, как указывалось ранее, представлена шнеком, загрузочным бункером объемов 0,03 м³, водоохлаждаемой горловиной на входе в реактор. Ее модернизация заключалась в расширении устья шнека и изменения угла подачи до полностью горизонтального (рисунок 11).

Рисунок 11- Изменение конструкции шнека подачи топлива

Сырье имеет низкую плотность, представляет собой вспушенную массу, поэтому объем бункера был увеличен до 0.1 m^3 .

Помимо этого, через постоянно открытый бункер по каналу шнека, уже сейчас до запуска реактора прогнозируются присосы воздуха, которые значительно влияют на процесс оксипиролиза в реакторе. Технология, вокруг которой строится процесс, будет нарушена. Поэтому принято решение по изменению конструкции бункера: изготовлена крышка и в бункер встроен аналоговый расходомер, позволяющий контролировать присосы воздуха через систему подачи топлива (рисунок 12).

Рисунок 12 – Изменение конструкции бункера сырья

5.4 Оценка теплотворной способности сырья

В июне 2023 г. проба высушенного сырья была отдана в топливную лабораторию НчГРЭС для оценки его теплотворной способности, влажности, зольности. По договоренности с руководством станции и начальником топливной лаборатории проведены замеры и получены следующие данные, представленные на рисунке ниже. Низшая теплота сгорания составила 17 кДж/кг. Результаты представлены в таблице 2, а также в приложении 3).

Таблица 2 – Энергетические характеристики сырья

Место оценки	Дата оценки	Влажность,	Зольность, %	Летучие, %	Низшая теплота сгорания, кДж/кг	Содержание серы S, %	Содержание хлора Cl, %
Топливная лаборатория НчГРЭС	06.06.2023	26,5	20,7	10,0	16,97	-	-
Лаборатория	02.04.2022	25,1	12,74	-	17,84	0,26	0,94
Ферзиковского	06.04.2022	34,1	10,15	-	15,08	0,25	0,67
цементного	07.04.2022	20,1	20,48	-	22,5	0,21	1,59
завода	08.04.2022	31,2	10,95	-	17,63	0,22	0,8

Для сравнения этих показателей у КЗПАТ были запрошены сканы протоколов исследований, которые проводились в лаборатории цементного завода в Ферзиково ООО «Холсим (Рус)». Протоколы представлены в приложении 4. Часть данных этих протоколов также вынесены в таблицу 2. При исходной влажности 26,5% расхождения по остальным показателям не значительны. Согласно ГОСТ 33516-2015 по показателю низшей теплоты сгорания сырье соответствует классу не ниже 3. Также подтверждается предположение, что на Ферзиковском заводе цементном заводе сырье перед сжиганием дополнительно обрабатывают (сушат, уменьшают зольность), что повышает его низшую теплоту сгорания.

5.5 Подготовка теплообменного оборудования

Проведение испытаний альтернативного топлива и анализ состава уходящих газов невозможен без их охлаждения до температуры, не превышающей 300 °С. В конце июля 2023 г. к испытаниям альтернативного топлива подготовлена система генерации пара, входящая в состав ЭТК. Котел промыт, проверены клапаны, задвижки, заменены прокладки. Промыта установка водоподготовки. Проверена герметичность деаэратора. Система заполнена теплоносителем (рисунок 13).

Рисунок 13 – Подготовка системы генерации пара к испытаниям экспериментального образца ЭТК

6 Состав экспериментального комплекса

Технологическая схема экспериментального образца ЭТК представлена на рисунке 14.

Основное технологическое оборудование ЭТК:

Модуль подготовки и сушки сырья:

- Сушильный барабан;
- Измельчитель сырья: ножевая дробилка;
- Шнековый питатель с приемным бункером.

Газогенераторный модуль:

- Реактор оксипиролиза с камерой газификации, производительностью до 90 кг/ч;
- Дизельная горелка для розжига, мощностью 30 кВт;
- Узел золоудаления отходов из реактора;
- Блок управления газогенераторным модулем.

Парогенераторный модуль:

- Твердотопливный предтопок мощность 1 MBт;
- Шнековый питатель твердого топлива с бункером;
- Паровой котёл Е 1.0-0.9 Р паропроизводительностью до 1 т/ч;
- Насос питательный;
- Блок управления парогенераторным модулем.

Система подготовки воды:

- Водоподготовительная установка ВПУ-1,0К;
- Деаэратор ДА-1;
- Ёмкость с водой, 1000 л.

Модуль очистки и удаления уходящих газов:

- Циклон (золоуловитель ЗУ 1-1);
- Мокрый скруббер для очистки газов (на стадии изготовления);
- Дымосос Д-3,5M;
- Дымовая труба высотой 16 м.

Турбогенераторный модуль:

- Паровая турбина мощность до 50 кВт, номинальные параметры пара: 1 МПа, 180
 °C, частота вращения вала до 12 000 об/мин;
- Электрогенератор мощность вентильно-индукторная машина, электрической мощностью 30 кВт;
- Блок электрической нагрузки с воздушными ТЭНами, суммарной мощность 30 кВт;
- Конденсатор пара тепловой мощностью до 600 кВт, с параметрами охлаждающей воды 70/20:
- Конденсатный насос;
- Вакуумный насос;
- Блок управления турбогенераторным модулем.

Трубопроводы, паропроводы, предохранительная и запорная арматура, приборы КИП.

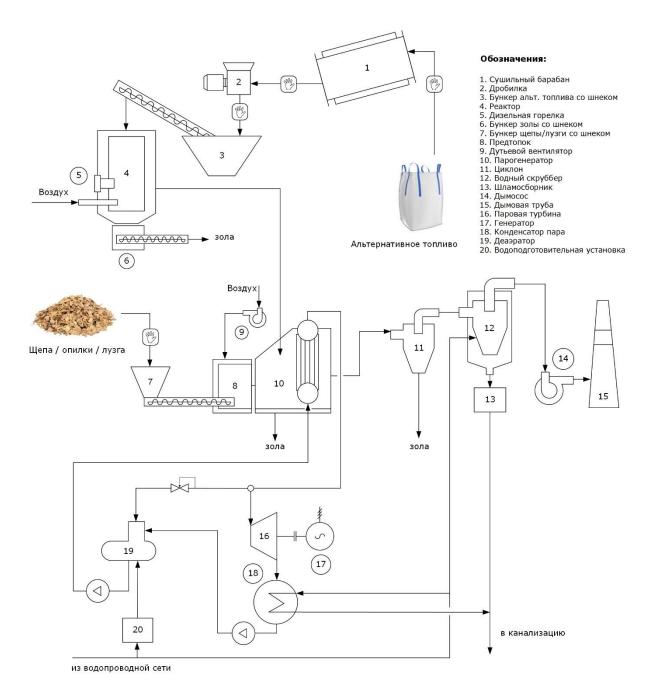


Рисунок 14 – Технологическая схема экспериментального образца ЭТК

7 Описание принципа работы энерготехнологического комплекса

7.1 Работа комплекса при испытании альтернативного топлива без выработки электроэнергии

Технологический процесс по переработке альтернативного топлива, предоставленного КЗПАТ, будет проводится в соответствии с разработанным ООО НПП «Донские технологии» Технологическим регламентом. Он включает следующие этапы.

Предварительно включается дымосос, который создает разрежение во всем газовоздушном тракте с целью предотвращения поступления продуктов термического процесса в помещение цеха и обеспечивает безопасность работ. В реакторе образуется перепад давления для поступления требуемого расхода воздуха в камерах пиролиза и дожигания.

Запуск реактора производится с помощью дизельной горелки. Дизельное топливо поступает из топливного бака. Горячий газ от горелочного устройства разогревает стенки и перегородки реактора до температуры 500-600 °C. Горелка на дизельном топливе работает 15-20 мин.

Включается подача воды из водопровода в скруббер.

Включается подача альтернативного топлива в реактор с помощью шнекового питателя. Топливо поступает в верхнюю часть камеры пиролиза, где происходит испарение остаточной влаги и термическое разложение отходов, с выделением теплоты.

Далее газообразные продукты пиролиза и твёрдые частицы сырья поступают в зону камеры оксипиролиза, куда поступает в малом количестве воздух, распределённый по длине камеры. В камере оксипиролиза идут реакции окисления продуктов пиролиза с выделением тепла и повышением температуры газа до $T = 800\,^{\circ}$ С. Термическое разложение идёт интенсивно с выделением большого количества горючего газа до полного разложения органической части топлива.

Минеральный остаток — зола, количество которой равно 10-12 % от массы топлива, остается в нижней части камеры оксипиролиза и периодически сбрасывается в бункер (зольник), откуда удаляется шнеком в специальную транспортируемую ёмкость.

Газообразные продукты оксипиролиза отводятся в кольцевую камеру дожигания реактора, где смешиваются со вторичным воздухом, и при $T=1000-1200~^{\circ}C$ происходит их дожигание.

Для достижения требуемого коэффициента избытка окислителя в кольцевую камеру дожигания через патрубок с шиберной задвижкой дополнительно вводится атмосферный воздух. Выход продуктов сгорания из камеры дожигания осуществляется через 2 патрубка, расположенных в нижней части кольцевой камеры дожигания. Патрубки объединены в один коллектор с фланцем, идущий к парогенератору. Наружная поверхность реактора закрыта теплоизоляционным покрытием.

Продукты сгорания топлива после парогенератора с температурой до 300 °C подвергаются очистке от зольных частиц в циклоне, тонкой очистке и охлаждению – в мокром скруббере, и далее при помощи дымососа выбрасываются через дымовую трубу в атмосферу.

Тепловая емкость парогенератора значительно выше тепловой мощности реактора, и нагрев теплоносителя в нем до точки парообразования займет более 3 часов. Поэтому в испытаниях альтернативного топлива нет необходимости задействовать паротурбинный цикл.

7.2 Работа комплекса при испытании альтернативного топлива с выработкой электроэнергии

В последовательность действий из пункта 7.1 добавится еще ряд этапов.

Перед тем, как включить в работу реактор, следует разогреть теплоноситель в паровом тракте до температуры насыщения.

Для этого потребуется разжечь твердотопливный предтопок дровами, и шнековым питателем из бункера твердого топлива подавать мелкоизмельченное однородное по составу топливо – лузгу сельскохозяйственных культур, древесные опилки или щепу.

Включением питательного насоса необходимо обеспечить циркуляцию теплоносителя по контуру парогенератор-деаэратор.

При выходе контура в стадию парообразования – осуществить операции из пункта 7.1. Далее при достижении параметров пара 0,2 МПа и 120 °C необходимо:

- включить в работу вакуумный насос для создания разряжения в конденсаторе;
- открыть задвижку подачи охлаждающей воды в конденсатор;
- плавно открыть задвижку паротурбинного контура и следить за оборотами на холостом ходу турбины. При выходе турбины на 8000 об/мин поэтапно нагружать турбогенератор, включая электрическую нагрузку.

Тем самым в испытаниях может быть задействован паросиловой цикл. Это позволит получить дополнительные экспериментальные данные о возможностях ЭТК по генерации электрической и тепловой энергии на данном альтернативном топливе.

8 Выводы по полученным результатам I этапа работ

- 1. Полученное сырье КЗПАТ («хвосты сортировки ТКО) не соответствует требованиям к качеству альтернативного топлива, предъявляемому ГОСТ 33516-2015. По своему составу данное сырье содержит:
 - органические отходы, которые должны были отобраны в процессе сортировки на компостирование и дальнейшего использования в качестве органического удобрения;
 - различные инертные включения: камни, бетон, стекло, металл, которые также должны были отобраны в процессе сортировки;
 - размер значительной части сырья превышает нормативный (не более $20\,$ мм) и достигал величины в $70-100\,$ мм;
 - влажность исходного сырья на момент получения достигала величины более 70% и в процессе естественной сушки на открытом пространстве в условиях теплого сезона в Ростовской области не опускалась ниже 35%.

Исходное сырье данного качества не может быть подвергнуто дальнейшей термической утилизации в реакторе оксипиролиза без его дополнительной подготовки. Его использование в качестве альтернативного топлива в цементной отрасли возможно после проведения цикла работ по доведению технических характеристик до требуемых ГОСТ.

Договоренность с цементным заводом в Ферзиково (рисунок 15), которому КЗПАТ поставляет данное сырье (бесплатно) подтверждает данный вывод. Завод самостоятельно доводит до требуемых характеристик все сырье, которое он получает как альтернативное топливо марки «RDF» от поставщиков (такая возможность у цементного завода имеется)

По данным из открытых источников общая доля замещаемого газа на альтернативное топливо на заводе достигает 25%. [3].

Рисунок 15 – Цех подготовки альтернативного топлива на цементном заводе компании ООО «Холсим (Рус) в Ферзиково

Для повышения экономической эффективности работы КЗПАТ и поставки альтернативного топлива по рыночной цене необходимо включить в состав технологического оборудования самостоятельный модуль по подготовке хвостов сортировки и доведения параметров альтернативного топлива до класса не ниже 3-го по ГОСТ 33516-2015. Технически возможно достижение класса 2 с теплотой сгорания не ниже 20 МДж/кг.

2. Параллельно с подготовкой к испытаниям альтернативного топлива ООО НПП «Донские технологии» на основе данных, предоставленных заводом и сведенных в таблице 3, провело работы по формированию для КЗПАТ технико-коммерческое предложение (ТКП) по реализации пилотного проекта ЭТК [4].

Таблица 3 – Исходные данные для формирования ТКП

Величина	Значение			
1. Годовая производительность перерабатывающего комплекса по сортировке ТКО:				
по проекту	300 000 т/г			
фактическая	140 000 т/г			
2. Разделение продуктов в процессе сортировки:				
 вторичные материальные ресурсы (ВМР) 	до 10 %			
– органика (техногрунт)	40 %			
хвосты после сортировки (компоненты RDF)	50 %			
3. Данные по морфологическому составу хвостов сортировки Т	КО:			
 полимерные материалы 	49,41 %			
– бумага	6,7 %			
– картон	9,64 %			
текстиль	13,02 %			
– резина	11,66 %			
– дерево	5,86 %			
– кожа	3 ,71 %			

4. Гранулометрический состав	от 3 см до 1 м (до
	измельчения)
5. Калорийность	20 ГДж/т
6. Требования потребителя RDF (цементного завода) к топливу	
– калорийность	> 14 ГДж/т
тонина помола	< 80 mm
– влажность	< 20 %
7. Годовая потребность КЗПАТ в энергетических ресурсах	
– электроэнергия	1 523 421 кВт·ч
тепловая энергия	н/д
— газ	н/д
 потребность в воде 	н/д
 требуемая температура внутри заводских помещений 	18 – 22 °C
нагрузка на ГВС	9,92 м ³ /сут., не менее 60
	°C, но, не более 75 °C
8. Экономические данные по предприятию:	
 тарифы на энергоносители, усредненные по году 	8,4 р/кВт·ч
 стоимость содержания склада RDF (участка RDF) 	1669,67 руб. без НДС
 стоимость логистики RDF 	326 руб./т (за счет
	потребителя RDF)

На сегодняшний день завод производит около 70 тыс. тонн хвостов сортировки ТКО в год. Установка даже 1 базовой линии энерготехнологического комплекса позволит более половины этого сырья -37,5 тыс. тонн/год подвергать дополнительной термической обработке и переработке, получая при этом до 2,3 т/ч сухого RDF (W=10 %) с целью его дальнейшего сбыта.

1 базовая линия ЭТК электрической мощностью 250 кВт полностью обеспечит потребности в электроэнергии на собственные нужды и оборудования сортировочных линий, выработав в течении года до 1 622 800 кВт·ч. Здесь стоит отметить важную особенность — для осуществления описанного сценария обязательно юридическое и технологическое подключение собственной генерации к розничному рынку электрической энергии. Это позволит предприятию в моменты, когда собственной мощности будет не хватать, скомпенсировать недостаток из внешней сети. При избытке мощности (отключении какого-либо оборудования) излишки мощности будут потреблены внешней сетью. Это позволит оборудованию ЭТК работать в постоянном суточном режиме без колебания нагрузки и, тем самым, меньше подвергаться износу.

Сбросная тепловая мощность 1 базовой линии ЭТК в 3500 кВт может быть реализована КЗПАТ на собственные нужды отопления, вентиляции, горячего водоснабжения или за счет теплофикации прилегающих производственных предприятий. Важно отметить, что реализации тепловой энергии позволит получать до 30,3 млн. руб. в год. Поэтому рекомендуется рассмотреть такой вариант развития бизнеса, как строительство современных теплиц поблизости с перерабатывающим предприятием. По предварительным расчетам тепловой энергии от 1 линии ЭТК хватит на отопление теплиц площадью более 1,5 Га.

Экономически обоснованной отпускной стоимостью альтернативного топлива, с точки зрения энергетического эквивалента, при замещении им природного газа будет 1000 руб./т.

9 План дальнейших совместных работ на последующие этапы НИОКР

- 1. Доработка оборудования подачи сырья в реактор: увеличить диаметр шнека со 100 мм до 200 мм.
- 2. Пробные пуски реактора на сырье КЗПАТ, стабилизация стадий пиролиза и газификации, доведение расходов воздуха до требуемых технологией пропорций. Уменьшение паразитных присосов воздуха.
- 3. Выход на стабильный режим работы реактора. Оценка выбросов и анализ результатов замеров.
- 4. Оценка тепловой мощности реактора на сырье КЗПАТ.
- 5. Доработка водного скруббера, включение его в систему очистки газов. Оценка выбросов и анализ результатов замеров.
- 6. Разработка способа и устройства улавливания выпара при сушке сырья, с целью получения проб конденсата и их лабораторного анализа.
- 7. Разработка технологии и оборудования для систем очистки сточных вод, образующихся при сушке хвостов сортировки ТКО.
- 8. Приглашение представителей КЗПАТ на демонстрационные пуски для оценки проделанных работ и рассмотрения возможности реализации проекта по созданию модуля по производству альтернативного топлива по данной технологии на КЗПАТ.
- 9. Работы по продвижению и реализации КНТП по глубокой переработке и утилизации ТКО. Подача заявки на конкурс Миннауки и высшего образования РФ в рамках ПП РФ.218 с целью выполнения проекта по созданию отечественного высокотехнологического оборудования по производству альтернативного топлива в Российской Федерации.

10 Рекомендации для КЗПАТ по улучшению качества альтернативного топлива Заводу рекомендуется:

- 1. Увеличить долю выбора органики путем включения в техпроцесс КЗПАТ дополнительного оборудование сортировки, например, барабанных грохотов.
- 2. Выполнить закрытые от осадков, хорошо проветриваемые склады хранения сырья.
- 3. Предусмотреть возможность обогащения топлива, доведения его состава и характеристик до стабильных, соответствующих 1-2 классу.
- 4. Встроить в линию КЗПАТ энергетический комплекс для сушки хвостов сбросным теплом, полученным от их термической утилизации, с целью уменьшения эксплуатационных затрат и конечной стоимости альтернативного топлива.
- 5. Установить дополнительные сепараторы, позволяющий отделить инертную фракцию (бетон, песок, гравий, стекло, металлические включения), и тем самым снизить зольность топлива. По сторонним экспериментальным данным зольность хвостов сортировки ТКО может достигать 35% от сухой массы.
- 6. Установить гранулятор, который позволит привести продукт к «удобному» виду и типоразмеру, уменьшить конечный объем, что сильно снизит логистическую составляющую стоимости альтернативного топлива. Или установить шредер тонкого помола с фракцией на выходе не более 30 мм.

7. Встроить генераторный модуль, работающий на хвостах сортировки, для получения электрической энергии с целью частичного или даже полного покрытия нагрузки сортировочного комплекса, включая новое оборудование модернизации.

Расчет ТКП показал, что наиболее рациональным является установка 1 базовой линии ЭТК электрической мощность 250 кВт. При следующих экономических показателях:

- Экономия за счет собственной генерации электроэнергии 13,6 млн. руб. в год.
- Доход от отпуска тепловой энергии 30,3 млн. руб. в год.
- Доход от реализации излишков RDF 18,5 млн. руб. в год.
- Итоговый суммарный доход составит 62,4 млн. руб. в год.
- 8. Наладить тесные связи с лабораторией, которая бы могла на постоянной основе (желательно каждые сутки) проводить оценку основных параметров продукции: теплотворной способности, влажности, зольности, содержания серных и хлорных соединений, содержания тяжелых металлов и т.д.
- 9. Получить сертификат качества и сертификат соответствия альтернативного топлива требованиям ГОСТ 33516-2015 и ежемесячно подтверждать высокое качество продукта протоколами независимой лаборатории.
- 10. Рынок альтернативного топлива быстро развивается, формируются законодательная и нормативная базы (Постановление Абрамченко, ГОСТ 33516-2015, перечень НДТ в ИТС 9-2015), и ориентация предприятия на получение и реализацию высококачественного RDF по цене в 1000 руб./т создает новые возможности для развития. Например, расширение генераторного модуля до 2-х линий ЭТК позволит:
 - за счет большей генерируемой электрической мощности (суммарно 500 кВт) включить в работу дополнительное оборудование сортировки и подготовки альтернативного топлива;
 - перерабатывать все образующиеся сегодня на КЗПАТ хвосты сортировки ТКО в сухое альтернативное топливо (доход от реализации которого составит 22,8 млн. руб. в год);
 - организовать дополнительное производство, например, круглогодичное тепличное хозяйство, и полностью обеспечить его избыточной тепловой и электрической энергией и, тем самым, значительно уменьшить эксплуатационные затраты этого хозяйства.

Список использованных источников

- 1. ГОСТ 33516-2015. ТОПЛИВО ТВЕРДОЕ ИЗ БЫТОВЫХ ОТХОДОВ. Технические характеристики и классы. Принят. 29.09 2015. М.: Стандартинформ, 2016. 19 с.: ил. Режим доступа: https://pdf.standartgost.ru/catalog/Data2/1/4293755/4293755531.pdf
- 2. Паспорт отраслевой программы «Применение альтернативного топлива из отходов в промышленном производстве на 2022 2030 годы»: утвержден постановлением зам. Председателя Правительства РФ В.В. Абрамченко от 28.12.2022г. №16042п-П11 [Электронный документ]. Режим доступа: https://www.profiz.ru/upl/Альтернативное%20из%20отходов%20.pdf
- 3. Пять лет на альтернативном топливе. [Электронный ресурс] / Сайт компании «Цементум». − 15.07.2020 − Режим доступа: <a href="https://cementum.ru/press-center/publications/2020/pyat-let-na-alternativnom-toplive/#:~:text=Летом%202015%20года%20на%20заводе,отходов%20экологичным%20и%20безопасным%20способом: свободный. Загл. с экрана. Яз. рус.
- 4. Технико-экономическое обоснование проекта создания энерготехнологического комплекса по глубокой переработке ТКО методом оксипиролиза на площадке и сырье Калужского завода по производству альтернативного топлива [электронный документ] / ООО НПП «Донские технологии»; исполн.: А.В. Рыжков. Новочеркасск, 2023 г. 17 с.: ил. Режим доступа: https://cloud.mail.ru/public/hjoN/J4VyLDwVh

Приложение 1

Договор о научно-техническом сотрудничестве между ООО НПП «Донские технологии» и КЗПАТ от 22.02.2023г. Приведена титульная страница. Весь документ в электронном виде по ссылке.

Проект

СОГЛАШЕНИЕ

о научно-техническом сотрудничестве при подготовке и реализации КНТП «Комплексная глубокая переработка твердых коммунальных отходов комбинированным методом оксипиролиза и газификации»

г. Новочеркасск

««Д» 2023 г.

Общество с ограниченной ответственностью научно-производственное предприятие «Донские технологии» (ООО НПП «Донские технологии»), именуемое в дальнейшем Инициатор проекта, в лице генерального директора Паршукова Владимира Ивановича, действующего на основании Устава предприятия и

Общество с ограниченной ответственностью «Калужский завод по производству альтернативного топлива» (ООО «КЗПАТ»), именуемый в дальнейшем Партнер проекта, в лице генерального директора Усенко Вадима Васильевича, действующего на основании Устава предприятия,

совместно именуемые Стороны, и принимая во внимание, что каждая из Сторон настоящего Соглашения имеет значительный опыт в сферах своей деятельности, заключили настоящее Соглашение (далее – Соглашение) и нижеследующем.

ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ

«КНТП Проект» - комплексный научно-технический проект полного инновационного цикла, комплекс работ, скоординированных по задачам, срокам и ресурсам, включающий научные исследования и этапы инновационного цикла создания технологий и высокотехнологической продукции, организации ее серийного производства и оказания услуг по обслуживанию оборудования в процессе эксплуатации.

«КНТП Программа» - комплексная научно-техническая программа полного инновационного цикла, комплекс работ, скоординированных по задачам, срокам и ресурсам, объединяющих несколько КНТП Проектов на основе взаимосвязи, направленных на создание прорывных технологий и получение результатов, обеспечивающих повышение конкурентоспособности отечественной экономики.

«Инициатор проекта» - органы государственной власти, члены Совета по приоритетным направлениям научно-технологического развития Российской Федерации, институты развития, организации реального сектора экономики и др. юридические лица, заинтересованные в создании комплекса инновационного оборудования, сформировавшие и подавшие заявку на разработку КНТП Проекта в формате, установленном Министерством науки и высшего образования России в соответствии с требованиями НТД.

«Координатор КНТП» - федеральный орган исполнительной власти (ФОИВ), осуществляющий государственное и нормативно-правовое регулирование в сферах, соответствующим направлениям реализации КНТП, либо иное юридическое лицо, распределяющее средства федерального бюджета, который выполняет функции ответственного исполнителя КНТП и отвечает за создание необходимых условий и предоставление преференций для реализации КНТП, утвержденных актом Правительства РФ.

«Заказчик КНТП Проекта» - региональные органы государственной власти, государственные корпорации, институты развития, организации реального сектора экономики и др. юридические лица, заинтересованные в использовании научных, научно-технических

Приложение 2

ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ НАУЧНО-ПРОИЗВОДСТВЕННОЕ ПРЕДПРИЯТИЕ «ДОНСКИЕ ТЕХНОЛОГИИ» (ООО НПП «ДОНСКИЕ ТЕХНОЛОГИИ»)

346400, Российская Федерация, Ростовская обл., г. Новочеркасск,

ул. Михайловская, д. 164А, помещение 2-4,6,7

ИНН 6150053531 КПП 615001001 Тел./факс: 8 (8635) 227 – 606

Cайт: www.don-tech.ru email: don-tech@mail.ru

№ <u>01</u> от «<u>12</u>» <u>января</u> 20<u>23</u> г.

На вх. № ____ от «__ » _____ 20__ г.

Генеральному директору

ООО «Калужский завод по производству

альтернативного топлива»

В. В. Усенко

248001, г. Калуга, ул. Суворова, д. 77, корпус 1, 2

этаж. Email: office@kzpat.ru

Уважаемый Валим Васильевич!

Консорциум научно-производственных предприятий Ростовской области и г. Санкт-Петербург ведет разработку энерготехнологических комплексов по термической переработке хвостов сортировки ТКО с получением тепловой и электрической энергии различной производительности. Для проведения испытаний опытных образцов энерготехнологических комплексов мы ищем производителей альтернативного топлива из ТКО. На юге России, там, где расположена испытательная площадка, таковых предприятий нет.

Просим Вас оказать содействовать в приобретении и доставке небольшой партии сырья для испытаний — 2-2,5 тони альтернативного топлива из ТКО. Помимо этого, нас интересуют вопросы состава и характеристик, производимого Вашим предприятием альтернативного топлива из ТКО. Существуют ли уже технические условия на альтернативное топливо, по которым завод его выпускает? Просим также их предоставить для анализа.

Генеральный директор

ООО НПП «Донские технологи»

С убажением г кнологи» В.И.Паршуков

ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ НАУЧНО-ПРОИЗВОДСТВЕННОЕ ПРЕДПРИЯТИЕ «ДОНСКИЕ ТЕХНОЛОГИИ» (ООО НПП «ДОНСКИЕ ТЕХНОЛОГИИ»)

346400, Российская Федерация, Ростовская обл., г. Новочеркасск, ул. Михайловская, д. 164А, п. 2-4,6,7

ИНН 6150053531 КПП 615001001

Сайт: www.don-tech.ru email: don-tech@mail.ru

№ 17 от «22» февраля 2023 г. На вх. № ___ от «__» ____ 20__ г.

Генеральному директору

ООО «Калужский завод по производству альтернативного топлива»

Усенко В.В.

248001, г. Калуга, ул. Суворова, д. 77, корпус 1,

2 этаж. Email: office@kzpat.ru

Уважаемый Вадим Васильевич!

На основании достигнутых договоренностей в рамках сотрудничества по реализации КНТП Проекта «Комплексная глубокая переработка твердых коммунальных отходов комбинированным методом оксипиролиза и газификации».

Прошу направить в ближайшее время 2 тонны RDF-топлива в биг-бэгах для проведения испытаний и изучения его химического свойства, по адресу: Ростовская область, г. Новочеркасск, Харьковское шоссе, д. 10, корпус 903.

Для организации взаимодействия по доставке груза от нашего предприятия назначен исполнительный директор Ощепков Андрей Сергеевич, к.т.н. Координаты для связи: тлф. +79034318540 (WhatsApp активен), E-mail: andrewos@rambler.ru.

Генеральный директор

C ybainerceieur ООО НПП «Донские технологии»

Приложение 3

Протокол топливной лаборатории НчГРЭС №1 от 30.06.2023г. по определению калорийности альтернативного топлива

ПУБЛИЧНОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО «ВТОРАЯ ГЕНЕРИРУЮЩАЯ КОМПАНИЯ ОПТОВОГО РЫНКА ЭЛЕКТРОЭНЕРГИИ» ($11AO \times OFK \cdot 2 n$)

ФИЛИАЛ ПАО «ОГК-2» - НОВОЧЕРКАССКАЯ ГРЭС Цех топливоподачи Топливная лаборатория

протокол

определения калорийности альтернативного топлива

30.06.2023	г. Новочеркасск	No.	1
D'OTO OTH O'ME	Tittone repineren		

Дата поступления пробы в ТЛ ЦТП: 06.06.2023

Определения калорийности альтернативного топлива произведен в Топливной лаборатории цеха топливоподачи филиала ПАО «ОГК-2» - Новочеркасская ГРЭС Заключение о состоянии измерений в лаборатории № 0051, действительно до 31.06.2023 г.

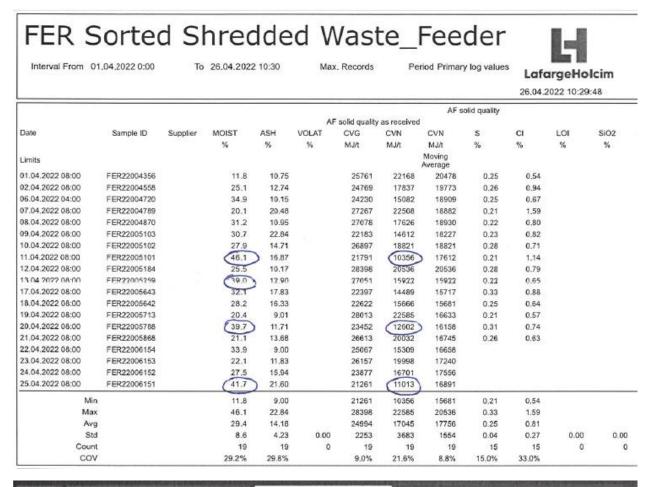
Условия выполнения измерений:

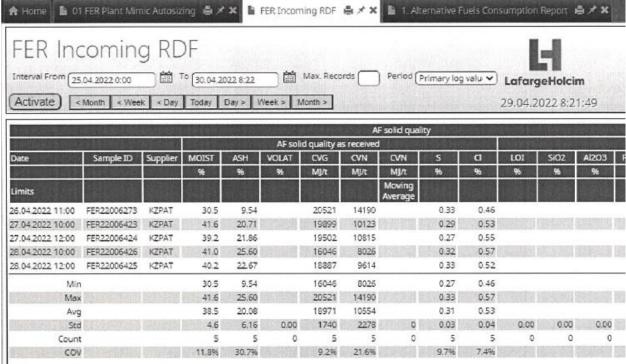
Температура окружающей среды: +20,3 °C

Влажность: 64,0 %

Атмосферное давление: 755 мм.рт.ст.

Результаты химического анализа


Наименование	Влага	Зола	Летучие	Низшая теплота
пробы	(Wr),%	(Ad),%	(Vdaf), %	сгорания (Qri), ккал/кг
Альтернативное топливо	26,5	20,7	10,0	4056


Начальник ЦТП

А.Н. Антоненко

Приложении 4

Протоколы лаборатории цементного завода в Ферзиково ООО «Холсим (Рус)»

